Eleven-year cosmic search leads to black hole rethink

One hundred years since Einstein proposed gravitational waves as part of his general theory of relativity, an 11-year search performed with the Commonwealth Scientific and Industrial Research Organization’s (CSIRO) Parkes telescope has shown that an expected background of waves is missing, casting doubt on our understanding of galaxies and black holes.

For scientists, gravitational waves exert a powerful appeal, as it is believed they carry information allowing us to look back into the very beginnings of the universe. Although there is strong circumstantial evidence for their existence, they have not yet been directly detected.

Using Parkes, the scientists expected to detect a background “rumble” of the waves coming from the merging galaxies throughout the universe, but they weren’t there.

The world’s first such research has caused scientists to think about the universe in a different way.

“In terms of gravitational waves, it seems to be all quiet on the cosmic front. However by pushing our telescopes to the limits required for this sort of cosmic search, we’re moving into new frontiers, forcing ourselves to understand how galaxies and black holes work,” said Ryan Shannon of CSIRO.

The fact that gravitational waves weren’t detected goes against theoretical expectations and throws our current understanding of black holes into question.

Galaxies grow by merging and every large one is thought to have a supermassive black hole at its heart. When two galaxies unite, the black holes are drawn together and form an orbiting pair. At this point, Einstein’s theory is expected to take hold, with the pair predicted to succumb to a death spiral, sending ripples known as gravitational waves through space-time, the very fabric of the universe.

Although Einstein’s general theory of relativity has withstood every test thrown at it by scientists, directly detecting gravitational waves remain the one missing piece of the puzzle.

To look for the waves, Shannon’s team used the Parkes telescope to monitor a set of “millisecond pulsars.” These small stars produce highly regular trains of radio pulses and act like clocks in space. The scientists recorded the arrival times of the pulsar signals to an accuracy of ten billionths of a second.

A gravitational wave passing between Earth and a millisecond pulsar squeezes and stretches space, changing the distance between them by about 33 feet (10 meters) — a tiny fraction of the pulsar’s distance from Earth. This changes, very slightly, the time that the pulsar’s signals arrive on Earth.

The scientists studied their pulsars for 11 years, which should have been long enough to reveal gravitational waves.

So why haven’t they been found? There could be a few reasons, but the scientists suspect it’s because black holes merge very fast, spending little time spiraling together and generating gravitational waves.

“There could be gas surrounding the black holes that creates friction and carries away their energy, letting them come to the clinch quite quickly,” said Paul Lasky from Monash University.

By CSIRO, Sydney, Australia  |  Published: Friday, September 25, 2015

Full article:

Source: Eleven-year cosmic search leads to black hole rethink | Astronomy.com

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s