Scientists detected a Particle made entirely of pure Nuclear Force

Scientists at the Vienna University of Technology (UT Wien) have come up with data that may prove that the meson f0(1710) particle could actually be the long sought-after “glueball” — a particle comprised entirely of pure force, which is integral to how we understand not only nuclear energy, but all energy.

Published in the scientific journal Physics Review Letters, the discovery of the possible particle link was made by Anton Rebhan and Frederic Brünner, who used a particle accelerator to measure the decay process and rate of the meson f0(1710) — the only way in which a glueball can conceivably be quantified and qualified, due to its short shelf life.

Protons and neutrons consist of even smaller elementary particles called quarks. These quarks are bound together by strong nuclear force. “In particle physics, every force is mediated by a special kind of force particle, and the force particle of the strong nuclear force is the gluon”, says Anton Rebhan (TU Wien).

Gluons can be seen as more complicated versions of the photon. The massless photons are responsible for the forces of electromagnetism, while eight different kinds of gluons play a similar role for the strong nuclear force. However, there is one important difference: gluons themselves are subject to their own force, photons are not. This is why there are no bound states of photons, but a particle that consists only of bound gluons, of pure nuclear force, is in fact possible.

Video: What are Quarks? Sugar Edition!

Posted By sedgecrooked

Full article:

Source: Scientists detected a Particle made entirely of pure Nuclear Force | Science Hook

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.