Building an archive on the Moon

Is there a business case that would support a private, unmanned mission to the moon? The people at Lunar Mission One certainly think so. If they’re right, an unmanned lander will touch down on a crater rim near the Moon’s south pole in 2024. Part of the lander will be devoted to scientific exploration, drilling through the regolith into the underlying rock and then analyzing the cores.

Once the borehole is drilled, the lander will fill it with what Lunar Mission One calls “the ultimate time capsule.” This will actually be a pair of archives—one public, containing a digital record of life on Earth, and a second private archive. The latter, with up to 10 million individual “digital memory boxes,” is what’s going to pay for the mission. We recently spoke with David Iron, the founder of Lunar Mission One, to find out a bit more.

Iron has a lengthy background in the space industry, and he came up with the idea of crowdfunding a moon landing after the UK government asked him to put together the case for funding space exploration. Iron said he was thinking about how to persuade people to pay to put their stuff on the moon. “Information is OK, but you’ll only get a few tens of dollars from each person, which isn’t enough,” he told Ars. “It wasn’t until I realized that we can also store hair, because it’s incredibly small and light, that people would pay hundreds of dollars for that, and I realized we had a business case.”

The digital memory boxes will also be able to hold a strand of hair each, so for $300 you can send not just a digital record of your life on earth (or whatever else you want to use those bytes for) but also a copy of your genome. Lunar Mission One’s market research suggests that, globally, there should be sufficient interest in the idea that it will appeal beyond just space enthusiasts. “People have tried to crowdfund space projects before; you can only raise tiny amounts. You will not get the space community and space enthusiasts [alone] to fund something like us,” Iron said.

Indeed, previous attempts to crowdfund a space launch didn’t go well for the Moonspike project.

“The idea of a private archive—your story, your DNA—it’s not everyone’s cup of tea, but it takes us well beyond the space community. We need to prove it properly with sales, which we’ll do step by step,” Iron said.

First was a Kickstarter campaign in 2014, which raised just over $1 million. Next up is a joint mission with Astrobotic, one of the Google Lunar XPRIZE competitors. Astrobotic plans to land on the moon in 2017; along for the ride will be a digital archive from Lunar Mission One.

The project, called Footsteps on the Moon, is part of the outreach strategy. Lunar Mission One is trying to democratize access to our closest neighbor in space. “The concept is that the moon is for everybody, and you can stand on the moon in a virtual way by sending a photograph of your foot to the moon,” Iron said.

Some people will be inspired to do more, spending $25 or so on a private data allocation. In turn, that exposes them to more information about the project. “What they do is then learn about the 2024 mission, the billion-year archive, step by step, which allows us to test the market every year of this eight- to ten-year program,” he said.

Of course, there’s more to Lunar Mission One than just drilling a hole and filling it with digital life stories and some hair samples. There are actually two separate projects of equivalent size and cost. The first is meant to help develop science and technology for space exploration; the second is a crowdsourced snapshot of life on Earth that should outlast everything until the Sun’s gradual decline into old age swells it up into a red giant that eats the moon, the archive, and everything else this side of Mars.

Space science

There are actually three components to the space science: “science of the moon, science on the moon, and science from the moon,” as Iron puts it.

First is the drilling, which ideally will go as deep as 100 meters. This is the most technologically challenging part of the entire mission. Although the Apollo and Soviet unmanned moon landings brought back plenty of moon rocks, “unfortunately, it’s from these boring dark areas called mare where there was volcanic activity, the last bits of the moon to solidify. Where we’re going to dried earlier, and it’s much more broken up,” he told Ars.

Lunar Mission One has taken a low-risk approach to the launcher, which will be purchased commercially. Iron told us that the SpaceX Falcon 9 currently meets the company’s cost and performance profile. “More and more launches are a commodity,” Iron noted. “From Earth orbit, getting to the moon isn’t actually much harder than geostationary orbit. Slowing down into lunar orbit isn’t that difficult, either. What is difficult is the landing.”

The Apollo missions picked rather boring landing sites on the moon to guarantee NASA’s astronauts the greatest chance of landing safely. The south polar region that Lunar Mission One (and others) are interested in is much rockier by contrast, and the lander will need a much greater degree of precision when it comes time to land. “We’re talking about the size of a football stadium,” Iron said. “That’s never been done before to that accuracy. There are projects underway to improve the navigation which allows that accuracy down to 100m or so, but it hasn’t yet been tested. We don’t think we’ll be the first one, but we might be.”

The idea is to land on the rim of a crater formed during the late heavy bombardment, near the south pole (the European Space Agency has already identified a number of possible landing sites). “What we’re looking at [as the lander drills down into the crater rim] is stuff that’s been brought up and dug out from lower down, sometimes even kilometers of depth, by an asteroid 4.5 billion years ago forming the rim of the crater. That in itself is interesting because it means by going down only a few meters, you can actually pick up rock that originally was kilometers in depth when the moon was first formed,” Iron said.Although the lander won’t be able to relocate once it’s on the Moon’s surface, the drill will be mounted on a moveable arm so that the project doesn’t end if the first drilling attempt goes poorly. According to Iron, the most difficult part will be the first two or three meters.

“Once you’re below a few meters, it gets easier. The risk is still there, but the risk per meter increases as you go deep,” he said. “If we can’t break the surface properly, we’re expecting the drill to be on an arm, so we’ll drill at a different place within the radius of the arm. We’ll probably get three or four attempts from one landing position.”

Principal analysis of the core samples will be conducted aboard the lander, but provisions are being made to return any particularly interesting pieces back to Earth. From there, the next component is research to inform future manned lunar bases. The lander will test whether plans to use convert regolith into water, oxygen, and fuel are plausible, and it will also measure levels of ionizing solar radiation. This “science from the moon” should give us a better idea of whether low frequency radio astronomy from the far side of the moon is possible.

 Jonathan M. Gitlin / Jonathan is the automotive editor at Ars Technica, covering all things car-related. Jonathan lives and works in Washington, D.C.

Full article:

Source: Building an archive on the Moon (and doing science, too) | Ars Technica

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s