Ancient Dwarf Galaxies Triggered the Universe

The green pea dwarf galaxy shown above “appears to be an excellent local analog of the numerous dwarf galaxies thought to be responsible for the reionization of the early universe,” said University of Virginia astronomer Trinh Thuan. “The finding is significant because it gives us a good place to look for probing the reionization phenomenon, which took place early in the formation of the universe that became the universe we have today.”

Using data from an ultraviolet spectrometer aboard the Hubble Space Telescope, the team discovered a nearby compact dwarf galaxy emitting a large number of ionizing photons into the intergalactic medium, or the space between galaxies. Scientists believe those photons are responsible for the universe’s re-ionization. The Hubble Space Telescope image above shows the green pea galaxy J0925+1403. The diameter of the galaxy is approximately 6,000 light years, and it is about twenty times smaller than the Milky Way.

In the period of several hundred thousand years after the Big Bang, the universe was so hot and dense that matter was ionized instead of being in a neutral form. But 380,000 years later, the expansion of the universe had cooled it enough for matter to become neutral and for the first structures of the universe to form – gas clouds of hydrogen and helium. Gravity then made these gas clouds grow in mass and collapse to form the first stars and galaxies. Then, about one billion years after the Big Bang, another important transformation occurred: the universe reheated, and hydrogen – the most abundant element – became ionized for a second time, as it had shortly after the Big Bang, an event which astronomers call “cosmic re-ionization.” How this happened is still debated.

 

1423675883_183_4439f5910916d9bac54f8ef39af16b72

 

The international team of scientists, organized by Trinh Thuan, has largely validated that hypothesis in a paper published Thursday in the journal Nature. Trinh’s research colleagues on the paper are at institutions in Ukraine, the Czech Republic, Switzerland, France and Germany.

Normal matter in the early universe consisted mostly of gas. Stars and star clusters are born from clouds of gas, forming the first galaxies. Ultraviolet radiation emitted by these stars contains numerous ionizing photons. For this reason, scientists have long suspected that galaxies were responsible for cosmic reionization. However, for reionization to occur, galaxies must eject these photons into the intergalactic medium; otherwise, they are easily absorbed by the gas and dust before they can escape. Despite 20 years of intensive searching, no galaxy emitting sufficient ionizing radiation had been found, and the mechanism by which the universe became re-ionized remained a mystery.

To solve this problem, the international research team proposed to observe “green pea” galaxies. Discovered in 2007, these galaxies represent a special and rare class in the nearby universe. They appear green to light sensors and are round and compact, like a pea. They are believed to host stellar explosions or winds strong enough to eject ionizing photons.

The team examined data from the Sloan Digital Sky Survey – a database of more than a million galaxies. From this survey, they identified approximately 5,000 galaxies that match their criteria: very compact galaxies emitting very intense UV radiation. Researchers selected five galaxies for observation with the Hubble Space Telescope.

January 14, 2016

By The Daily Galaxy via University of Virginia

Full article:

Source: Ancient Dwarf Galaxies -“Triggered the Phenomenon That Created the Universe We See Today”

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s