Are we alone in the Universe?

(Illustration of the Drake equation and the Frank equation. In 1961, astrophysicist Frank Drake developed an equation to estimate the number of advanced civilizations likely to exist in the Milky Way galaxy. The Drake equation (top row) has proven to be a durable framework for research, and space technology has advanced scientists’ knowledge of several variables. But it is impossible to do anything more than guess at variables such as L, the probably longevity of other advanced civilizations. In new research, Adam Frank and Woodruff Sullivan offer a new equation (bottom row) to address a slightly different question: What is the number of advanced civilizations likely to have developed over the history of the observable universe? Frank and Sullivan’s equation draws on Drake’s, but eliminates the need for L.

Credit: Image courtesy of University of Rochester)

Are humans unique and alone in the vast universe? This question– summed up in the famous Drake equation–has for a half-century been one of the most intractable and uncertain in science.

But a new paper shows that the recent discoveries of exoplanets combined with a broader approach to the question makes it possible to assign a new empirically valid probability to whether any other advanced technological civilizations have ever existed.

And it shows that unless the odds of advanced life evolving on a habitable planet are astonishingly low, then human kind is not the universe’s first technological, or advanced, civilization.

Illustration of the Drake equation and the Frank equation. In 1961, astrophysicist Frank Drake developed an equation to estimate the number of advanced civilizations likely to exist in the Milky Way galaxy. The Drake equation (top row) has proven to be a durable framework for research, and space technology has advanced scientists’ knowledge of several variables. But it is impossible to do anything more than guess at variables such as L, the probably longevity of other advanced civilizations. In new research, Adam Frank and Woodruff Sullivan offer a new equation (bottom row) to address a slightly different question: What is the number of advanced civilizations likely to have developed over the history of the observable universe? Frank and Sullivan’s equation draws on Drake’s, but eliminates the need for L.
Credit: Image courtesy of University of Rochester

The paper, published in Astrobiology, also shows for the first time just what “pessimism” or “optimism” mean when it comes to estimating the likelihood of advanced extraterrestrial life.

“The question of whether advanced civilizations exist elsewhere in the universe has always been vexed with three large uncertainties in the Drake equation,” said Adam Frank, professor of physics and astronomy at the University of Rochester and co-author of the paper. “We’ve known for a long time approximately how many stars exist. We didn’t know how many of those stars had planets that could potentially harbor life, how often life might evolve and lead to intelligent beings, and how long any civilizations might last before becoming extinct.”

“Thanks to NASA’s Kepler satellite and other searches, we now know that roughly one-fifth of stars have planets in ‘habitable zones,’ where temperatures could support life as we know it. So one of the three big uncertainties has now been constrained.”

Frank said that the third big question–how long civilizations might survive–is still completely unknown. “The fact that humans have had rudimentary technology for roughly ten thousand years doesn’t really tell us if other societies would last that long or perhaps much longer,” he explained.

But Frank and his coauthor, Woodruff Sullivan of the astronomy department and astrobiology program at the University of Washington, found they could eliminate that term altogether by simply expanding the question.

“Rather than asking how many civilizations may exist now, we ask ‘Are we the only technological species that has ever arisen?’: said Sullivan. “This shifted focus eliminates the uncertainty of the civilization lifetime question and allows us to address what we call the ‘cosmic archaeological question’ — how often in the history of the universe has life evolved to an advanced state?”

That still leaves huge uncertainties in calculating the probability for advanced life to evolve on habitable planets. It’s here that Frank and Sullivan flip the question around. Rather than guessing at the odds of advanced life developing, they calculate the odds against it occurring in order for humanity to be the only advanced civilization in the entire history of the observable universe. With that, Frank and Sullivan then calculated the line between a Universe where humanity has been the sole experiment in civilization and one where others have come before us.

“Of course, we have no idea how likely it is that an intelligent technological species will evolve on a given habitable planet,” says Frank. But using our method we can tell exactly how low that probability would have to be for us to be the ONLY civilization the Universe has produced. We call that the pessimism line. If the actual probability is greater than the pessimism line, then a technological species and civilization has likely happened before.”

Using this approach, Frank and Sullivan calculate how unlikely advanced life must be if there has never been another example among the universe’s twenty billion trillion stars, or even among our own Milky Way galaxy’s hundred billion.

The result? By applying the new exoplanet data to the Universe as a whole, Frank and Sullivan find that human civilization is likely to be unique in the cosmos only if the odds of a civilization developing on a habitable planet are less than about one in 10 billion trillion, or one part in 10 to the 22th power.

“One in 10 billion trillion is incredibly small,” says Frank “To me, this implies that other intelligent, technology producing species very likely have evolved before us. Think of it this way. Before our result you’d be considered a pessimist if you imagined the probability of evolving a civilization on a habitable planet were, say, one in a trillion. But even that guess, one chance in a trillion, implies that what has happened here on Earth with humanity has in fact happened about a 10 billion other times over cosmic history!”

For smaller volumes the numbers are less extreme. For example, another technological species likely has evolved on a habitable planet in our own Milky Way galaxy if the odds against it evolving on any one habitable planet are better than one chance in 60 billion.

But if those numbers seem to give ammunition to the “optimists” about the existence of alien civilizations, Sullivan points out that the full Drake equation — which calculates the odds that other civilizations are around today — may give solace to the pessimists.

April 28, 2016

University of Rochester. “Are we alone? Setting some limits to our planet’s uniqueness.” ScienceDaily. ScienceDaily, 28 April 2016. <www.sciencedaily.com/releases/2016/04/160428095339.htm>.

Full article:

Source: Are we alone? Setting some limits to our planet’s uniqueness — ScienceDaily

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s