Measuring a massive black hole

It’s about 660 million times as massive as our sun, and a cloud of gas circles it at about 1.1 million mph.

This sits at the center of a galaxy dubbed NGC 1332, which is 73 million light years from Earth. And an international team of scientists that includes Rutgers associate professor Andrew J. Baker has measured its mass with unprecedented accuracy.

Their groundbreaking observations, made with the revolutionary Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, were published today in the Astrophysical Journal Letters. ALMA, the world’s largest astronomical project, is a telescope with 66 radio antennas about 16,400 feet above sea level.

Black holes – the most massive typically found at the centers of – are so dense that their gravity pulls in anything that’s close enough, including light, said Baker, an associate professor in the Astrophysics Group in Rutgers’ Department of Physics and Astronomy. The department is in the School of Arts and Sciences.

A black hole can form after matter, often from an exploding star, condenses via gravity. Supermassive at the centers of massive galaxies grow by swallowing gas, stars and other black holes. But, said Baker, “just because there’s a black hole in your neighborhood, it does not act like a cosmic vacuum cleaner.”

Measuring a black hole 660 million times as massive as our sun
Combined image of NGC 1332 shows the central disk of gas surrounding the supermassive black hole at the center of the galaxy. New ALMA observations traced the motion of the disk, providing remarkably precise measurements of the black hole’s mass: 660 million times the mass of our Sun. The main image is from the Carnegie-Irvine Galaxy Survey. The box in the upper left is from the Hubble Space Telescope and shows the galaxy’s central region in infrared light and the dusty disk appears as a dark silhouette. The ALMA image, upper right box, shows the rotation of the disk, enabling astronomers to calculate its mass. The red region in the ALMA image represents emission that has been redshifted by gas rotating away from us; the blue represents blue-shifted gas rotating toward us. The range of colors represent rotational speeds up to 500 kilometers per second. Credit: A. Barth (UC Irvine), ALMA (NRAO/ESO/NAOJ); NASA/ESA Hubble;Carnegie-Irvine Galaxy Survey. Read more at: http://phys.org/news/2016-05-black-hole-million-massive-sun.html#jCp

Stars can come close to a black hole, but as long as they’re in stable orbits and moving fast enough, they won’t enter the black hole, said Baker, who has been at Rutgers since 2006.

“The black hole at the center of the Milky Way, which is the biggest one in our own galaxy, is many thousands of light years away from us,” he said. “We’re not going to get sucked in.”

Scientists think every massive galaxy, like the Milky Way, has a at its center, Baker said. “The ubiquity of black holes is one indicator of the profound influence that they have on the formation of the galaxies in which they live,” he said.

Understanding the formation and evolution of galaxies is one of the major challenges for modern astrophysics. The scientists’ findings have important implications for how galaxies and their central supermassive black holes form. The ratio of a black hole’s mass to a galaxy’s mass is important in understanding their makeup, Baker said.

Research suggests that the growth of galaxies and the growth of their black holes are coordinated. And if we want to understand how galaxies form and evolve, we need to understand supermassive black holes, Baker said.

Part of understanding supermassive black holes is measuring their exact masses. That lets scientists determine if a black hole is growing faster or slower than its galaxy. If black hole mass measurements are inaccurate, scientists can’t draw any definitive conclusions, Baker said.

Provided by: Rutgers University

May 5, 2016

Full article:

Source: Measuring a black hole 660 million times as massive as our sun

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s